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ABSTRACT -Licensed spectrum band of the primary user (PU) when not in use for some time, a secondary user (SU) can utilize 

the unused spectrum band at that particular time so that the spectrum can be utilized efficiently. However, if the SU is unaware 

that the PU is utilizing the channel and begins to transmit on the channel, it causes interference in the PU’s signal. Thus, this 

paper employs a unique technique in which multi-antenna with Cyclostationary spectrum sensing methods are combined to 

improve PU’s signal at detection. In addition, the Maximum Selection (MS)-based energy detection spectrum sensing technique 

was also in comparison. The SU uses two or more receiving antennae and the Cyclostationary method which uses the signal’s 

intrinsic period-statistics and spectral correlation to sense the PU signal’s presence even when the channel is highly noisy. The 

system was simulated for different numbers of received antennas using M-ary Phase Shift Keying (MPSK) digital modulation 

schemes for signal transmission. The modulation schemes used are QPSK, 8PSK, and 16PSK. Simulation results reveal that the 

probability of detection increases as the number of the receiving antennae increases, and the probability of missing decreases as 

the number of antennae increases. Also, on average, the multi-antenna Cyclostationary method outperforms the MS-based energy 

detection method by about 35% in the probability of detection and about 40% in the probability of missing. The Multi-antenna 

Cyclostationary sensing technique helps to improve the spectrum sensing accuracy. 
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1.0 Introduction  

The scarcity of radio spectrum in recent years has been attributed to the inefficiency of conventional static spectrum 

distribution schemes, leaving little room for future demands, if any. The issue of spectrum scarcity has gained 

significant attention, prompting efforts to address it through innovative solutions. Cognitive radio technology, which 

allows dynamic spectrum access by intelligently selecting optimal wireless channels to minimize interference and 

congestion, has emerged as a promising approach (Abdullah, Dawood, Abdelkareem, & Abed, 2020). Cognitive radio 

maximizes spectrum efficiency by enabling flexible spectrum access and has the potential to alleviate the shortage of 

usable radio spectrum. Since its introduction, researchers have focused on managing the radio spectrum more 

effectively, leading to rapid advancements in the field (Al-Hussain & Al Azawi, 2020). Cognitive radio technology 

has been investigated for over two decades, with innovations continuously evolving (Bagwari, Tomar, & Verma, 

2013). To enhance spectral efficiency, cognitive radio networks exploit periodic intervals of unused frequency bands, 

known as white space or spectrum gaps, providing a solution to the spectrum scarcity problem (Bollig, Lavrenko, 

Arts, & Mathar, 2017). cognitive radio technology(B. Wang et al., 2010) has emerged as a breakthrough 

communication paradigm that can provide quicker and more reliable wireless services by more efficiently exploiting 

the existing spectrum band. A lack of radio spectrum in recent years has been attributed to the ineffectiveness of 

conventional static spectrum distribution schemes (Arjoune & Kaabouch, 2017). There is no space for future demands 

in this situation, assuming any exist at all. The issue of spectrum scarcity has gotten a lot of press lately, so it's getting 

a lot of attention. It may be described as a radio that can be configured to access dynamic spectrum by intelligently 

selecting the optimal wireless channel to minimize interference and congestion (Abdullah et al., 2020). Cognitive 

radio technology is one of the methods for maximizing the use of available spectrum, and it is currently being tested. 

In terms of spectrum efficiency, it is a game-changing instrument (Ahmad, 2019). Cognitive radio technology, by 

enabling complicated spectrum access, can alleviate the shortage of useable radio spectrum. Ever since the 

introduction of this groundbreaking technology, researchers have been trying to make it possible to manage the radio 

spectrum. Because of this, this field of research has advanced rapidly, with significant advances (Al-Hussain & Al 
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Azawi, 2020). Cognitive radio technology, which has been extensively investigated by the scientific community for 

over two decades, is one answer to these and other problems (Bagwari et al., 2013). To improve spectral efficiency, 

cognitive radio networks have been developed as a potential technique for accessing periodic intervals of empty 

frequency bands, termed white space or spectrum gaps (Bollig et al., 2017). IoT devices with opportunistic spectrum 

access (Cahyo et al., 2013) may interact with each other and with the internet while the main user is not present using 

cognitive radio (CR). It improves band utilization and enhances spectrum resource allocation, cryptosystem utilizes 

spectrum allocation to limit unauthorized access to ensure confidentiality, encryption, and program integrity (Cao & 

Liu, 2015). They can automatically identify which communication channels are in use and immediately migrate into 

the unoccupied ones while avoiding the ones that are. "Cognitive radio" is a type of wireless communication in which 

the transmitter can intelligently identify which communication channels are in use and which ones are not. It then 

switches to the channels that are free and avoids the busy ones. The Radio-frequency (RF) spectrum is optimally used 

in this way, with the least amount of disruption to other users (Chaudhari et al., 2016). Continuously re-evaluate the 

parameters of its operations, and learn from its experience. Cognitive radio (CR) refers to a radio that is aware of its 

operational and geographical surroundings as well as its internal state. Dynamically and autonomously, it can change 

its operating settings as well as its procedures, and it can also learn from its past experiences. Several methods can be 

used to identify primary users. 

 

2.0 Related Works 

Advancements in radio spectrum management have driven extensive research in this field. In Üstok's (2010) study, 

spectrum sensing techniques for cognitive radio systems with multiple antennas were explored. The method used 

involved cyclostationary feature detection and energy detection, focusing on enhancing performance with multi-

antenna systems. The results showed improved detection accuracy and reduced interference in cognitive radios, 

particularly under low signal-to-noise ratio (SNR) conditions. However, the study's main shortcoming was the 

complexity and high computational demand of the multi-antenna setup, making it less feasible for real-time, large-

scale applications.  

Chen, Gibson, and Zafar (2008) introduced a method for detecting cyclostationary spectrum density using Kaiser 

window functions. This method leverages spectral autocorrelation to detect weak signals, even in the presence of 

noise. The Kaiser window enhances the signal detection process by optimizing between the main lobe width and side 

lobe amplitude, making it more effective for spectral analysis. The study highlights the efficiency of the method for 

spectrum sensing, although challenges include higher computational demands due to extended observation periods.  

Saggar and Mehra (2013) used the FREquency SHift (FRESH) method, which applies filters to optimally estimate 

cyclostationary signals by leveraging spectral coherence. The method improved spectrum sensing in low signal-to-

noise ratio (SNR) environments, allowing more accurate detection of weak signals. The results demonstrated enhanced 

performance in detecting cyclostationary signals under noisy conditions. However, a notable shortcoming is the 

increased computational complexity required for filter optimization and handling spectral coherence, which may limit 

its practical application in real-time scenarios. 

Abdullah et al. (2020) hybridized energy detection and cyclostationary sensing techniques by employing the Fast 

Fourier Transform (FFT) for energy detection and the Sliding Discrete Fourier Transform (SDFT) for cyclostationary 

detection. The simulations conducted under multipath fading channels showed improved detection performance in 

both cooperative and non-cooperative scenarios. However, the method's complexity may pose a limitation, requiring 

significant computational resources and potentially increasing latency, which could hinder real-time applications in 

dynamic spectrum environments. 

 Elnahas and Elsabrouty (2017) proposed a compressed spectrum sensing algorithm using the Fast Fourier Transform 

Accumulation Method (FAM) and multi-task compressive sensing for cooperative cyclostationary systems, reducing 

high sampling rates in wideband signal sensing. The method showed improved detection accuracy and spectral 

efficiency. However, its main shortcomings include computational complexity and reliance on cooperative networks, 

which can introduce synchronization issues and communication overhead, reducing sensing accuracy in dynamic 

environments. 
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3.0 Materials and Methods 

3.1 System model for the MIMO antenna signaling with MPSK modulation 

 In a multi-antenna cognitive radio network, both the transmitter (i.e. PU) and receiver (i.e. SU) are equipped 

with multiple antennas which represent a 𝑁𝑡 × 𝑁𝑟 MIMO antenna configuration. In this paper, the PU uses 𝑁𝑡 = 4 

antennas to transmit while the SU uses 𝑁𝑟 number of antennas for sensing (or receiving) the PU’s signal a value𝑁𝑟 

varies between and 6 antennas.  Downright signaling system can be represented by the matrix model equation that 

follows;  [

𝑟1
⋮
𝑟𝑁𝑟

] = [
ℎ11 … ℎ1𝑁𝑡
⋮ ⋱ ⋮

ℎ𝑁𝑟1 … ℎ𝑁𝑟𝑁𝑡

] [

𝑥1
⋮
𝑥𝑁𝑡

] + [

𝑛1
⋮

𝑛𝑁𝑟
]    (1) 

Equation (1) can be rewritten in vector form as: 

  Bold𝒓 = 𝑯𝒙 + 𝒏       (2) 

Where 𝒓 denotes 𝑁𝑟 copies of the received signal, 𝒙 denotes the 𝑁𝑡 – dimensional transmitted symbol, e 𝑁𝑟 – 

dimensional additive white Gaussian noise (AWGN) vector; and 𝑯 represents the fading channel matrix which is 

assumed to be Rayleigh distribution. Each element of 𝑯 denotes the ℎ𝑖𝑗 channel gain from the transmit antenna 𝑗 to 

receive antenna 𝑖..he transmitted symbol 𝑥𝑗 is assumed to be M-ary Phase Shift Keying (MPSK) modulated where M 

represents the modulation level. The value for M is taken to be 4 denoting QPSK modulation, which is commonly 

used in various applications.  

3.2 Multi-antenna Maximum Selection (MS)-based energy detection technique 

 The energy content of a received signal can be obtained as:𝐸𝑡 = ∑ |𝑥(𝑛)|2𝑁
𝑛=1     

 (3) 

where N denotes the number of symbols in the signal which represents the length of the signal. The value of 𝐸𝑡 is 

compared with a predetermined threshold Calabasas: 

  Cap𝐸𝑡 ≤ 𝜆       (4) 

The MS-based energy detection technique with MIMO antenna is represented in the block diagram of Figure 

1. The SU receives 𝑁𝑟 copies of the detected signal of which each signal copy has a fading level different from the 

others. Then, the maximum absolute value of symbols in each signal copy is computed.  
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The signal copy that gives the maxim absolute value 𝑀𝑎𝑥(|𝑟𝑖|), is selected and forwarded to the energy detector which 

computes the signal energy using Eq. (3). Then, the value 𝐸𝑡 is forwarded to the decision block to decide whether PU 

signal is detected or not.         

Decision

PU
antenna

Energy 
Detection 
technique

Max(|ri(n)|)Transmitter

SU
antenna  

Figure 1: Block diagram of MS-based energy detection technique with MIMO antenna 

 

3.3 Multi-antenna cyclostationary detection technique 

 A modulated signal 𝑟(𝑡) is considered to be a periodic signal or a cyclostationary signal if its mean and 

autocorrelation exhibit periodicity as: 

 𝐶𝑟(𝑡 + 𝜏 2⁄ , 𝑡 − 𝜏 2⁄ ) = ∑ [
1

𝑇
∫ 𝐶𝑥(𝑡 + 𝜏 2⁄ , 𝑡 − 𝜏 2⁄ )
1 𝑇⁄

−1 𝑇⁄
𝑒𝑗2𝜋𝛼𝑡𝑑𝑡] 𝑒𝑗2𝜋𝛼𝑡𝛼   (5) 

    = ∑ 𝐶𝑟
𝛼(𝜏)𝛼 𝑒𝑗2𝜋𝛼𝑡     (6) 

where 𝛼 denotes the cyclic frequency, which is to be known to the SU. Expressing 𝐶𝑟
𝛼 in frequency domain gives the 

Spectral Correlation Function (SCF) as: 

 𝑆𝑟
𝛼(𝑓) = ∫ 𝐶𝑟

𝛼(𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
∞

−∞
                 (7) 

 The cyclostationary detection technique with MIMO antenna is represented in the block diagram of Figure 

2.  
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Copies of the received signal picked up by the SU antennas are passed to the maximum likelihood detector.  

Decision

PU
antenna

Cyclostationary 
detection 
technique

 Maximum 
Likelihood 
detector

Transmitter

SU
antenna  

Figure 2: Block diagram of cyclostationary detection technique with MIMO antenna 

 

3.4 System Simulation  

 The flowchart and algorithm for the simulation of the systems are shown in Figure 3 and Algorithm 1. 

MATLAB programs were written from the algorithm and numerical results were obtained. The input data to the system 

were randomly generated bits.  
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Figure 3: Flowchart for the system implementation 

 

 

 

 

 



 

7 
 

Table 1: Simulation parameters of the System 

Parameter Value 

Modulation scheme QPSK 

Number of transmit (or PU) antennas 4 

Number of receive (or SU) antennas [2, 3, 4, 5, 6] 

Space-time block code (STBC) rate 0.5 

STBC length 8 

Carrier frequency 2.0 GHz 

Threshold for cyclostationary detection 6.5 

Fundamental cyclic period 25 

Number of iterations 100 

Length of information bits 1000 

 

3.5 System Performance Evaluation Metrics 

 Three metric indices were employed to evaluate the proposed scheme’s technique. These metrics are 

probability of detection (Pd), probability of missing (Pm), and average bit error rate (BER). 

3.5.1 Probability of Detection (Pd): This is the probability of the spectrum sensing technique to detect the PU 

signal correctly. The Pd increases with increasing received signal strength or SNR.  The probability of detection is 

obtained by summing the number of times the spectrum sensing technique correctly detects the PU signal’s presence 

and then dividing the sum by the number of iterations or counts. 

3.5.2 Probability of Missing (Pm): This is the probability that the PU signal presence cannot be detected by the 

spectrum sensing technique. The Pm decreases with increasing received signal strength or SNR.  The probability of 

missing is obtained by summing how many times PU signal’s presence is missed by the spectrum sensing technique 

and then dividing the sum by the number of iterations or counts. 

3.5.3 Bit Error Rate (BER): This is calculated by dividing the number of bits received in error by the total number 

of bits received.  

3.6 Results and Analysis 

Performance of Spectrum Sensing Techniques using Multi-Antenna Receiver 

 We present in this section the simulated result analyses of the proposed multi-antenna spectrum sensing 

strategies. The number of transmitting antennas is given by  𝑁𝑡 while the number of receiving antennas is represented 

by 𝑁𝑟 . Hence, a multi-antenna configuration is represented by  𝑁𝑡 × 𝑁𝑟  MIMO. The PU transmits using  𝑁𝑡 and QPSK 

modulation while the SU receives or senses using  𝑁𝑟. Figure 4 shows the probability of detection performance in 

terms of SNR for the cyclostationary detection technique for 𝑁𝑡 = 4 and 𝑁𝑟 varied between 2 and 6 antennas. The 

results indicate that all the MIMO configurations, that is, 4x2 MIMO, 4x3 MIMO, 4x4 MIMO, 4x5 MIMO, and 4x6 

MIMO achieved 1.0 (or 100%) probability of detection from -4 dB and above.  

 However, at a lower SNR (signal-to-noise ratio) of -15 dB, the 4x2 MIMO, 4x3 MIMO, 4x4 MIMO, 4x5 

MIMO, and 4x6 MIMO achieved 0.5236, 0.7308, 0.8636, 0.9352 and 0.9608 probability of detection, respectively. 

The results reveal that the cyclostationary detection technique achieves better probability of detection with increasing 

number of  𝑁𝑟 antennas. Probability of detection for the maximum selection (MS)-based energy detection spectrum 

sensing technique proposed by Ustuk (2010) was also investigated and the results shown in Figure 5. The results 

reveal that all the MIMO antenna configurations achieved a 1.0 (or 100%) probability of detection from 8 dB and 

above.  However, at a lower SNR of -10 dB, the 4x2 MIMO, 4x3 MIMO, 4x4 MIMO, 4x5 MIMO, and 4x6 MIMO 

achieved 0.0960, 0.5960, 0.8848, and 1.0000 probability of detection, respectively. 

The results demonstrate the ability of MS-based energy detection technique to achieve better probability of 

detection with increasing number of  𝑁𝑟 antennas.  
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Figure 4: Probability of Detection versus SNR for cyclostationary detection technique 

 

The results show that increasing the number of receiving antennas (N_r) in MIMO configurations improves the 

probability of detection for both cyclostationary and MS-based energy detection techniques.  
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Cyclostationary detection achieves better performance in low SNR environments, with detection improving from 

52.36% (4x2 MIMO) to 96.08% (4x6 MIMO) at -15 dB. MS-based detection reaches 100% detection at 8 dB or higher 

but performs poorly at lower SNRs. In practice, larger antenna arrays enhance detection reliability in cognitive radio 

networks, particularly under weak signal conditions. 

 

 

 

 

 

 

Figure 5: 

Probability of Detection versus SNR for 

maximum selection (MS)-based energy detection spectrum sensing technique 

Figure 6 shows the probability of missing performance in terms of SNR for the cyclostationary detection 

technique. The results show that all the MIMO configurations achieved (or 100%) probability of missing from -4 dB 

and above. At lower SNR of -12 dB, probability of missing values 0.1996, 0.0708, 0.0232, 0.0092 and 0.0064 were 

obtained with 4x2 MIMO, 4x3 MIMO, 4x4 MIMO, 4x5 MIMO and 4x6 MIMO, respectively. For the MS-based 

energy detection technique as shown in Figure 7, all the MIMO configurations achieved (or 100%) probability of 

missing from 8 dB and above. However, at SNR of -12 dB, the 4x2 MIMO, 4x3 MIMO, 4x4 MIMO, 4x5 MIMO, and 

4x6 MIMO achieved probability of missing values 1.0000,1.0000,0.7624, 0.3904 and 0.1200, respectively. The results 

reveal that both the cyclostationary detection and MS-based energy detection techniques achieve better probability of 

detection with increasing number of  𝑁𝑟 antennas. 

 

 
Figure 6: Probability of Missing versus SNR for cyclostationary detection spectrum sensing  

technique 

 
Figure 7: Probability of Missing versus SNR for MS-based energy detection spectrum sensing technique 

The effect of MIMO antenna configuration on Average Bit Error Rate (ABER) performance for the 

cyclostationary detection is shown Figure 8.  
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The trend is that the ABER reduces with increasing SNR irrespective of the spectrum sensing technique. 

 
Figure 8: Average BER versus SNR for cyclostationary detection spectrum sensing technique 

The results indicate that increasing the number of receiving antennas (N_r) reduces the probability of missing in both 

detection techniques. For cyclostationary detection at -12 dB, the probability of missing decreases from 19.96% (4x2 

MIMO) to 0.64% (4x6 MIMO). Similarly, for MS-based energy detection, it drops from 100% (4x2 and 4x3 MIMO) 

to 12% (4x6 MIMO). These findings suggest that using more antennas enhances detection accuracy, particularly in 

low-SNR environments, improves detection accuracy, reducing the probability of missing signals, especially in low-

SNR conditions, enhancing system reliability. 

3.7 Conclusion  

This work is an enhanced cyclostationary spectrum sensing scheme using a multi-antenna technique. The 

system was simulated for different numbers of received antennas using M-ary Phase Shift Keying (MPSK) digital 

modulation schemes for signal transmission. Simulation results showed that the multi-antenna cyclostationary 

detection technique gives a higher probability of detection and a lower probability of missing. The simulations 

revealed that increasing the number of receiving antennas improved detection accuracy, reducing the probability of 

missing signals and lowering the Average Bit Error Rate (ABER). The results show that both cyclostationary and MS-

based energy detection techniques benefit from larger antenna arrays, especially in low-SNR environments. These 

findings make the technique highly effective for real-world applications, such as cognitive radio networks (CRN), 

where reliable and efficient spectrum sensing is essential. 
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